Пороговые шлейфы сигнализации: от клемм – к матрицам.

Часть 1. Общие сведения о пороговых шлейфах сигнализации

В.Н. Коренев,
к.т.н., руководитель направления разработок
и внедрения ООО «Системы Безопасности»,
г. Новосибирск

 

Пороговые шлейфы сигнализации, несмотря на свою низкую информативность и восприимчивость к помехам, продолжают применяться в различных системах тревожной сигнализации. Это обусловлено тем, что на рынке изделий тревожной сигнализации остается еще много неадресных извещателей и датчиков, которые имеют на своем выходе два стабильных состояния, соответствующие нормальному и тревожному. Они успешно конкурируют с адресными изделиями в силу их дешевизны и  совместимости с различными приемно-контрольными приборами.

Несмотря на простоту схемотехники, пороговые шлейфы сигнализации можно сделать значительно информативнее, чем это реализовано в существующей аппаратуре. Это становится возможным с применением современной микропроцессорной техники, у которой возрастает разрядность АЦП, производительность обработки данных, объемы встроенной памяти и в тоже время уменьшается цена.

Однако повышение информативности связано с ростом контролируемых событий и сложностью алгоритмов перехода из одного состояния в другое. Описывать эти процессы становится все сложнее. Поэтому, при разработке таких изделий и их описании для пользователей, удобно использовать физические и программные модели шлейфа сигнализации.

Каждый пороговый шлейф сигнализации (ШС) прибора можно описать моделями с двух точек зрения:

С физической точки зрения – это электрическая цепь, соединяющая прибор с извещателями (датчиками) посредством проводных соединений (Рис.1). Каждый ШС имеет различные схемотехнические варианты [1], выбираемые разработчиком. В схеме включения изображаются контакты извещателя, резисторы и другие компоненты, обеспечиващие работу ШС.

Любой извещатель можно представить в виде электрического контакта, который при срабатывании скачком меняет свое сопротивление: становится либо замкнутом (сопротивление контакта равно нулю), либо разомкнутом  (сопротивление контакта равно бесконечности).

Контакты извещателя подключается проводными соединительным линиями к клеммам приемно-контрольного прибора.

В приемно-контрольном приборе клеммы связаны с «Измерителем сопротивления», который измеряет электрическое  сопротивление всей цепи ШС, а «Решающее устройство» по величине ее сопротивления принимает решение о том, сработал извещатель или нет.

 

Рис.1. Модель порогового шлейфа сигнализации

 

ШС подключается к измерителю сопротивления через клеммы, расположенные на плате прибора приемно-контрольного (ППК). Измеритель измеряет электрическое  сопротивление всей цепи ШС , а решающее устройство по величине ее сопротивления принимает решение о том, сработал извещатель или нет.

С информационной точки зрения - это программный объект, состоящий из фиксированного набора событий. Событие в ШС  может происходить в результате изменения сопротивления ШС, либо приходить извне, в виде управляющих команд. Набор событий определяется тактиками ШС. Каждая тактика ШС включает в себя:

  1. Тип шлейфа сигнализации (пожарный, охранный, аварийный и управления) и название;
  2. Электрическую схему включения;
  3. Шкалу диапазонов сопротивлений ШС, разделенную  порогами;
  4. Привязки состояний к диапазонам сопротивлений ШС;
  5. Список событий ШС;
  6. Матрицу событий.

В качестве примера применения терминов, рассмотрим тактику пожарного шлейфа сигнализации «Однопороговая». В такой тактике предусматривается выдача сигнала «Пожар» при срабатывании любого одного или нескольких извещателей:

  1. Тип шлейфа сигнализации – пожарный, однопороговый.
  2. Электрическая схема включения -  может быть выполнена в нескольких вариантах (рис.1.1.):
  1. с нормально-замкнутыми контактами извещателей (К1, К2). В этом случае контакты соединяются в линию шлейфа последовательно, а контрольные резисторы подключается параллельно контактам извещателей;
  2. с нормально-разомкнутыми контактами извещателе (К3, К4). В этом случае контакты извещателей соединяются параллельно линии шлейфа, а контрольные резисторы подключается последовательно контактам;

 

Рис.2. Электрические схемы включения контактов  пожарных извещателей.

 

3) Шкала диапазонов сопротивлений, разделенная разработчиком порогами сопротивлений на 8 диапазонов: Д1 … Д8 (Рис.3).

 

Рис.3. Шкала диапазонов сопротивлений ШС

 

При замыкании и размыкании контактов извещателей в различных комбинациях, сопротивление шлейфа попадает в тот или иной диапазон.

 

  1. Привязки состояний к диапазонам сопротивлений ШС

Под состояниями шлейфа понимаются физические или логические свойства, характеризующие шлейф при изменении его сопротивления.

В «Однопороговом» ШПС разработчиком назначены следующие состояния:

  • Норма;
  • Пожар;
  • КЗ;
  • Обрыв.

 

Эти состояния привязываются к диапазонам:

 

 

 

  1. Список Событий ШС

Под событием понимается переход от одного состояния к другому. При этом учитываются как состояния самого шлейфа, так и другие состояния прибора, имеющие отношения к шлейфу.

В «Однопороговом» ШПС разработчиком назначены следующие события:

  • Сброс - событие в приборе в момент его перезагрузки (включении питания);
  • НеГотов -  событие означающее, что после перезагрузки сопротивление шлейфа не находится в диапазоне «Норма»;
  • НаДежурстве –  сопротивление шлейфа перешло в диапазон «Норма» [Д5];
  • Пожар – сопротивление шлейфа в любом из  диапазонов «Пожар» [Д2] [Д3] [Д4] [Д6] [Д7];
  • Замыкание -  сопротивление шлейфа находится в диапазоне «КЗ» [Д1];
  • Обрыв -  сопротивление шлейфа находится в диапазоне «Обрыв» [Д8];

 

  1. Матрица Событий

Матрица событий определяет последовательность наступления событий при изменении состояний. При помощи матрицы удобно представлять алгоритмы работы шлейфа. Матрица представляет собой таблицу,  в которой имеются следующие элементы:

 

Рис.4. Внешний вид матрицы событий.

 

Принцип применения матрицы для описания алгоритма работы шлейфа представлен на рис.5. В качестве примера, в крайне левом столбце, выберем текущим статус «НаДежурстве». Выделим зеленым фоном строку с событиями в поле событий, которые возможны при нахождении в этом статусе. Далее рассмотрим, какое событие произойдет при появлении нового состояния шлейфа «Пожар»:

 

Рис.5. Пример работы матрицы при наступлении состояния «Пожар»

 

В результате работы матрицы шлейф перешел в новый текущий статус «Пожар». Анализ влияния новых состояний шлейфа в статусе «Пожар» показывает, что никакое другое физическое изменение сопротивления шлейфа не изменит этого статуса. Для того чтобы вывести шлейф из статуса «Пожар» его необходимо перевести в новое  состояние «Сброс». Такое состояние может прийти в шлейф извне: например, при нажатии кнопки сброса.

 

 

Таким образом, матричное представление существенно облегчает описание сложных алгоритмов работы пороговых шлейфов сигнализации и может быть использовано, как при их разработке, так и  при описании работы изделия в руководстве пользователя [3]. Очевидно, что матричное представление удобно и при описании алгоритмов других узлов изделий тревожной сигнализации.

 

Литература:

  1. Пинаев А., Никольский М. Оценка качества и надежности неадресных приборов пожарной сигнализации //Журнал "Алгоритм безопасности", № 6, 2007.
  2. Неплохов И.Г. Анализ параметров шлейфа двухпорогового ППКП// Алгоритмы безопасности №5, 2010г.
  3. Прибор контроля опасных ситуаций и оповещения "Хранитель-IT"// 
Источник: Daily (.sec ru)